Case Study: TSZM / TSCDN
Engaged: Christopher Shepherd for BE&L (Open Source Community Grant)
Position: Sole Author

Summary:

The first-ever Infocom Z-Machine implementation written from scratch in Typescript. Compatible
with z3 games, Quetzal-format savegames, with frontends for console (node) and browser
(React). Additionally, an image CDN that makes use of two language models: Qwen, to gather
context and write a meaningful JSON image prompt for illustration of the most recent game
move, and FLUX-1-Schnell, to execute the image prompt. lllustrations are presented via inline

Sixel graphics on console, or a PNG-based React component in the browser.

Somewhere near Los Angeles. A cold Friday evening in February 19
their bottoms glowing faintly from the city lights i1n the distance.

waiting for the rain to begin, lLike a cat waiting for the ineffable

The taxi ust d you off at the entrance to the Linders'

But the house windo of light, and radio music drifts

ch book off the curb. It might come 1n handy. Good thing you looked

mox

ibout the family. The 1 week 1s finished, except for this appoin

Process:

Initial work involved decoding of the Z-Machine game header, followed by opcode decoding
logic (which unsurprisingly turned out to be the hot path of the engine). Opcode dispatch initially
took the form of a large 'case’ statement, as in many other emulators, but was refined into an
array of objects indicating the class of instruction, how many additional bytes to ingest from the
code path, and so forth.

Very early on (almost at the very start) in the development process, a Typescript Interface class
was introduced to enforce a contract for different input/output technologies, as it was foreseen
that both console and browser modalities would be supported. This decision was greatly
validated, both when the React frontend was added, and when the Z-Machine engine was
moved into an npmjs module.

ZMCDN was the real innovation in this project, as someone (hello Jay) had asked what it could
look like if someone were to add Al-based on-the-fly illustrations to Infocom games. Another
Typescript Interface contract enforces the ZMCDN REST API, which involves sending the past 8
in-game inputs and outputs to Qwen to establish context. At this point, Qwen uses this input,
along with its Master Prompt, to return a JSON image prompt suitable for FLUX-1-schnell.
FLUX-1-schnell then generates the image, which is cached for the given game and room. As a
result, although the language models are hosted offsite at Deeplnfra, the games cost pennies
per month to serve a few dozen users.

Once the initial logic was validated with jest test cases, opcodes were added, one at a time, until
100% z3 compatibility was achieved. Significant progress has been made towards z4
compatibility, as work continues on this project, although it's no longer at the forefront of
Christopher's queue. Although development was not test-driven, tests were a vital part of the
opcode and logic development process, both to validate new opcodes and prevent regressions.
This project would not be possible without excellent test coverage.

Result:

Interactive Fiction Al Architecture

: ZMCDN
I
I
I
I
I
I Qwen3-328 @ Deeplnfra FLUX-1-schnell @ Deeplnfra
1
1
I
1
1
1
]
] .“ \
] ! \
. Textoutputfrom ZMachine Custon JSON prompt JSON-formatted prompt PNG llustration
I + hints from inside VM data for Illustrator rom Game Master P
1 | 1 {
] ‘\I \ / \
I \ { |
! | \ “ 1
. =) 3
! -
I “"JSON prompt__
ZMachine I TN
IMachine Bytecode Interprete e
achine @ interpreter + Hints from]
(ZMachine.ts) nside VM ! Game Master (GM) Bustrator
1 -
: _PNGImage
I
I
¥ 1
e e e e e e = = = = o — m —— —————_——————
Useer Keyboard Input Processed Text Output

+ Sixel Graphics

Text Console 0 Handler
(ZConsole.ts)

The above architecture emerged, based on aforementioned interface contracts. This image
clearly shows the integration relationship between the various components.

This was really well-received by the community, to the point that BE&L received a community
endowment for open source retrogaming-related contributions. It is currently funding the
development of a well-loved AAA title that never shipped for the Apple IIGS, despite shipping for
the Atari ST, Amiga, and IBM AT. It also involves a bytecode interpreter, although it isn't as
complex as Z-Machine.

Live Demo:
https://cshepherd.fr/tszm-react/
Source Code Repositories:

https://github.com/cshepherd/tszmachine (npmjs module containing the Z-Machine engine)

https://github.com/cshepherd/tszm (console-based frontend)
https://github.com/cshepherd/tszm-react (React-based browser frontend)

https://cshepherd.fr/tszm-react/
https://github.com/cshepherd/tszmachine
https://github.com/cshepherd/tszm
https://github.com/cshepherd/tszm-react

